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Abstract

Linked Open Data initiatives have made available a diversity of scientific collections

where scientists have annotated entities in the datasets with controlled vocabulary terms

from ontologies. Annotations encode scientific knowledge, which is captured in annota-

tion datasets. Determining relatedness between annotated entities becomes a building

block for pattern mining, e.g. identifying drug–drug relationships may depend on the

similarity of the targets that interact with each drug. A diversity of similarity measures

has been proposed in the literature to compute relatedness between a pair of entities.

Each measure exploits some knowledge including the name, function, relationships with

other entities, taxonomic neighborhood and semantic knowledge. We propose a novel

general-purpose annotation similarity measure called ‘AnnSim’ that measures the re-

latedness between two entities based on the similarity of their annotations. We model

AnnSim as a 1–1 maximum weight bipartite match and exploit properties of existing

solvers to provide an efficient solution. We empirically study the performance of AnnSim

on real-world datasets of drugs and disease associations from clinical trials and relation-

ships between drugs and (genomic) targets. Using baselines that include a variety of

measures, we identify where AnnSim can provide a deeper understanding of the seman-

tics underlying the relatedness of a pair of entities or where it could lead to predicting

new links or identifying potential novel patterns. Although AnnSim does not exploit

knowledge or properties of a particular domain, its performance compares well with a

variety of state-of-the-art domain-specific measures.
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Introduction

One of the early successes of the Linked Data initiatives is

the publication of a diversity of scientific collections, e.g.

Bio2RDF is the largest project of Linked Data for Life

Sciences (https://github.com/bio2rdf/bio2rdf-scripts/wiki).

Scientists have annotated entities in these collections

with controlled vocabulary (CV) terms from ontologies or

taxonomies. Annotations describe properties of these

entities, e.g. the functions of genes are described using

Gene Ontology (GO) CV terms and with the

Resource Description Framework predicate drugbank:

goClassificationFunction in the DrugBank dataset

(http://wifo5-03.informatik.uni-mannheim.de/drugbank).

Annotations induce an annotation graph where nodes

correspond to scientific entities or ontology terms, and

edges represent relationships between entities. Figure 1

illustrates a portion of the Linking Open Data cloud that

induces an annotation graph. Consider clinical trials linked

to a set of diseases or conditions in the NCI Thesaurus

(NCIt). Clinical trials from LinkedCT (http://linkedct.org/)

are represented by blue ovals; they are associated with

interventions or drugs (green rectangles) and diseases or

conditions (pink rectangles). Both interventions and condi-

tions are then annotated with terms from the NCIt (red

circles). Some annotations of a drug may correspond to

terms in the NCIt that identify the drug, whereas others

may correspond to the diseases or conditions that have

been treated with this drug. Knowledge captured within

scientific collections, annotations and ontologies are rich

and complex. For example, the NCIt version 12.05d has

93 788 terms. The LinkedCT dataset circa September

2011 includes 142 207 interventions, 167 012 conditions

or diseases and 166 890 links to DBpedia, DrugBank and

Diseasome. Thus, the challenge is to explore these rich and

complex datasets to discover patterns that will allow for

the discovery of potential novel associations. For instance,

Palma et al. (1) have proposed a novel edge partition tech-

nique that relies on semantic similarities to identify pat-

terns across drug and target interactions; these patterns are

further used to suggest novel interactions, which could be

validated in latest online version of STITCH (http://stitch.

embl.de/).

As a first step to discover complex patterns, we propose

a similarity measure ‘AnnSim’ that determines the related-

ness (or similarity) of a pair of scientific entities, based on

their annotations with respect to one or more ontologies.

An example is identifying the relatedness or similarity of

(drug, drug) pairs, based on the annotation evidence of dis-

eases (conditions) from the NCIt. Identifying relatedness

between drugs can lead to discoveries of new targets for

these drugs, or it can predict their potential side-effects.

A broad variety of similarity measures have been pro-

posed in the literature, and they can be of diverse types.

String-similarity measures compute similarity using string

Figure 1. Annotation graph of Clinical Trials from LinkedCT (blue ovals). Interventions are green rectangles; conditions are pink rectangles and CV

terms from the NCIt are red ovals.
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matching functions (e.g. Ref. 2), whereas path-similarity

measures, such as ‘PathSim’ (3) and ‘HeteSim’ (4), com-

pute relatedness based on the paths that connect entities

in a graph. Structural or context-based measures determine

if two entities are similar in terms of their relationships

with other entities [e.g. SimRank (5)], whereas topological-

similarity measures compute relatedness based on the

closeness of CV terms in a given taxonomy or ontology

(e.g. Refs. 6–8). Function or domain-specific measures

reflect relatedness of entities based on their properties

or function, e.g. Sequence Similarity relies on the

Smith–Waterman scores (9). Ontological similarity meas-

ures exploit knowledge encoded in ontologies to compute

the semantic similarity between terms (10–13), whereas

Information Content (IC) measures rely on IC to compute

similarity between entities (14–19).

We propose a measure named AnnSim that determines

the relatedness of two entities in terms of the similarity

or relatedness of (two sets of) their annotations. AnnSim

combines properties of path- and topological-based simi-

larity measures to decide the relatedness between these

annotations. To the best of our knowledge, our research is

the first to consider both the shared annotations between a

pairs of entities of any abstract type, as well as the related-

ness of the annotations (CV terms) within some ontology,

to determine the resulting relatedness of the two entities.

Example 1.1 Antineoplastic agents and monoclonal anti-

bodies are two popular and independent intervention re-

gimes that have been successfully applied to treat a large

range of cancers. There are 12 drugs that fall within their

intersection, and scientists are interested in studying the re-

lationships between these drugs and the corresponding dis-

eases. Consider the two drugs Brentuximab vedotin

and Catumaxomab. Figure 2 represents an annotation

graph of Figure 1. Each path between a pair of conditions,

e.g. Carcinoma and Anaplastic Large Cell

Lymphoma through the NCIt is identified using red circles,

which represent ontology terms from the NCIt. The count

of red circles represents the length of a path in NCIt.

To simplify the figure, we only illustrate the paths from the

term Carcinoma.

We model AnnSim as a 1–1 maximum weight bipartite

matching, and we exploit properties of existing solvers

to provide an efficient solution. We empirically study the

effectiveness of AnnSim on real-world datasets of

evidences from clinical trials and a well known human dis-

ease benchmark. We compare the quality of AnnSim with

respect to existing similarity measures including dtax (7),

dps (8), HeteSim (4) and semantic similarity measures

(14–19).

Additionally, we use the online tool Collaborative

Evaluation of Semantic Similarity Measures (CESSM) to

compare AnnSim with respect to state-of-the-art semantic

similarity measures. Finally, we evaluate AnnSim on two

datasets comprising drugs, targets and interactions. The

first dataset was collected by Perlman et al. (20) and com-

prises 310 drugs, 210 targets and 1306 interactions from

DrugBank. The second dataset of drug–target interactions

collected by Yamanishi et al. (21), and it comprises four

subsets of Nuclear receptors, Gprotein-coupled receptors

Figure 2. Annotation subgraph representing the annotations of Brentuximab vedotin and Catumaxomab. Interventions are green rectangles; condi-

tions are pink rectangles and ontology terms in the NCIt are red circles. (a) Weighted bipartite graph for Brentuximab vedotin and Catumaxomab.

(b) 1–1 maximum weight bipartite matching for Brentuximab vedotin and Catumaxomab
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(GPCRs), Ion channels and Enzymes, obtained from

KEGG BRITE (22), BRENDA (23), SuperTarget (24) and

DrugBank (25). In both datasets, drugs and targets are

associated with domain-specific similarity measures, and

the goal of these experiments is to evaluate the behavior

of a general-purpose measure as AnnSim with respect

to state-of-the-art domain-specific measures, as well as the

potential of uncover patterns that may lead to the discov-

ery of new relationships and interactions.

This article extends the work by Palma et al. (26). Our

contributions are summarized as follows:

• The formalization of an annotation-based similarity

measure AnnSim that defines the relatedness of two enti-

ties in terms of the sets of their annotations. AnnSim is

a general-purpose measure that exhibits a stable behav-

ior in a variety of scientific entities and ontologies. The

implementation of AnnSim is built on top of an existing

1–1 maximum weight bipartite matching solver.

• An empirical study that validates properties and behavior

of AnnSim using a variety of ground truth datasets includ-

ing human curation. Empirical analysis of the

experimental results suggests that AnnSim can provide a

deeper understanding of the relatedness of entities, and in

some cases, it can also provide an explanation of patterns.

• The evaluation of the correlation of AnnSim with respect

to the sequence similarity measure (9) and the compari-

son of this behavior with respect to state-of-the-art

semantic similarity measures (14–19). Reported results

were produced by the online tool CESSM and reveal that

AnnSim is competitive even with combined and domain-

specific measures that consider both IC and structural

characteristics of the compared annotations.

• An empirical study to compare the behavior of AnnSim

with respect to several state-of-the-art domain-specific

measures for drugs and targets. The evaluation consists

on the generation of clusterings of the drugs based on

drug–drug similarity measures and AnnSim. The data

mining WEKA tool is used to generate the clusterings,

and diverse measures are computed to measure the qual-

ity of the clusterings. The study shows that the cluster-

ings of drugs based on AnnSim can be used to uncover

patterns that suggest potential new associations between

drugs and targets.

This article is organized as follows: Section ‘Related work’

summarizes related work and gives the preliminary knowledge

of this work and illustrates the performance of existing

approaches in a real-world example. Section ‘Annotation simi-

larity measure for annotation graphs’ presents our approach.

Experimental results are reported in Section ‘Experimental

evaluation’. Finally, we conclude in Section ‘Conclusions and

future work’ with an outlook to future work.

Related work

Determining relatedness between entities becomes a build-

ing block for pattern mining. A diversity of similarity

measures has been proposed in the literature to compute

relatedness between a pair of entities. Each measure ex-

ploits some knowledge including the name, function, rela-

tionships with other entities, taxonomic neighborhood

and semantic knowledge. We classify existing measures as

string-, path-, graph-based, functional or domain-specific

or semantics-based similarity measures. We also describe

different techniques that rely on graph matching algo-

rithms to compute the values of similarity.

String-based similarity measures

The first class of measures include string similarity; they

compare names or labels of entities using string compari-

son functions based on edit distances or other functions

that compare strings. The broadly used string distance

measures either reflect the number of edit operations that

have to be performed on two strings to convert one into

the other (e.g. the Levenstein distance) or they count the

number and order of common characters between two

strings [e.g. Jaro-Winkler (2)].

Path- and structure-based similarity measures

Path- or structure-based similarity measures compute the

relatedness of two entities according to the properties of

the paths that connect them [e.g. PathSim (3) or HeteSim

(4) or dps (8) or dtax (7)] or the structure of the graph that

includes the two entities [e.g. SimRank (5), nan (6)].

Entities in the paths can be all of the same abstract

types [e.g. PathSim (3)] or they can be heterogeneous

[e.g. HeteSim (4)]. Further, similarity between entities in a

graph can be measured recursively in terms of the similar-

ity of their neighbors, e.g. SimRank (5). High values

of structure-based similarity indicate that the entities are

connected with a large number of paths that meet certain

conditions or the sub-graph that includes both entities is

highly connected.

We consider details of a few measures. dtax (7) and dps

(8) define the distance of two nodes in terms of the depth

of the nodes to the root of the ontology and the distance to

the their lowest common ancestor (LCA). These concepts

are defined as follows: given a directed acyclic graph G,

the depth of a vertex x in G is the length of the longest

path from a root of G to x. Given a directed acyclic graph

G, the ‘lowest common ancestor’ (27) of two vertices x and

y is the vertex of greatest depth in G that is an ancestor of

both x and y. Let d(x, y) be the number of edges in the
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shortest path between vertices x and y in a given ontology.

Also let lca(x, y) be the LCA of vertices x and y.

The intuition behind the dps measure is to capture the

ability to represent the taxonomic distance between two

vertices with respect to the depth of the common ancestor

of these two vertices. Extending on this idea, dtax (7) as-

signs low(er) values of taxonomic distance to pairs of verti-

ces that are (i) at greater depth in the taxonomy and

(ii) they are closer to their LCA. A value close to 0.0 means

that the two vertices are close to the leaves and both

are close to their LCA. A value close to 1.0 represents

that both vertices are general or that the LCA is close to

the root of the taxonomy. The distance measure dtax is as

follows where, root is the root node in the ontology:

dtaxðx; yÞ ¼
dðlcaðx; yÞ; xÞ þ dðlcaðx; yÞ; yÞ

dðroot; xÞ þ dðroot; yÞ (1)

The distance measure dps is defined as follows:

dpsðx;yÞ ¼ 1� dðroot; lcaðx;yÞÞ
dðroot; lcaðx;yÞÞþdðlcaðx;yÞ;xÞþdðlcaðx;yÞ;yÞ

(2)

The pair of drugs Brentuximab vedotin and

Catumaxomab appears in the NCIt with codes C66944

and C62445, respectively. Thus, we could use either of the

distance measures and compute similarity values, we can

use either of the path-based distance measures (1�dtax) or

(1� dps); the similarity values are 0.60 and 0.43, respect-

ively. Note that unlike the proposed AnnSim measure, this

similarity between the pair of drugs only considers their

location within the NCIt and does not exploit knowledge

of their annotations, e.g. the diseases associated with these

drugs.

The measure HeteSim (4) defines the relatedness of en-

tity pairs in terms of the paths that connect the entities in a

graph. Paths considered during the computation of this

measure are type-path constrained, i.e. they must corres-

pond to instances of a sequence of classes or types named

relevance path. HeteSim(s,tjP) measures how likely s and t

will meet at the same entity when s follows along the path

that respects the relevance path P and t goes against the

path. Shi et al. (4) define a relevance path as a meta-path

that encodes the conditions to be met by the paths that are

considered in the computation of the measure, i.e. a com-

posite relation where HeteSim is computed.

Definition 2.1 [Relevance Path (4)] Given a schema

S¼ (A, R), where A and R are sets of entity and relation

types, respectively. A relevance path of the form P ¼ A1!
R1

A2!
R2 � � �!Rl

Alþ1 corresponds to a composite relation

R¼R1 � R2 � � � � � Rl between entity types A1 and Alþ1,

where � denotes the composition operator between rela-

tion types. The number of relation types in the path

indicates the length of the path.

Definition 2.2 [HeteSim (4)] Given two objects s and t

(s2R1 and t2Rl) and a relevance path P ¼ A1!
R1

A2!
R2 � � �

!Rl
Alþ1 that corresponds to a composite relation R¼R1 �

R2 � � � � � Rl,

HeteSimðs; tjR1 � R2 � � � � � RlÞ ¼
1

jOðsjR1ÞjjIðtjRlÞ

XjOðsjR1Þj

i¼1

XjIðsjRlÞj

j¼1

HeteSimðOiðsjR1Þ; IjðtjRlÞjR2 � � � � � Rl�1Þ

where OðsjRiÞ and IðsjRjÞ correspond to the out-neighbors

and in-neighbors of s based on relations Ri and Rj, respect-

ively, and OtðsjRiÞ and IkðsjRjÞ represent the tth and kth

elements in the out-neighbors and in-neighbors of s based

on relations Ri and Rj, respectively.

For example, given the annotation graph of Figure 2

and paths of type (Drug, NCIt, NCIt, Drug),

HeteSim(Brentuximab vedotin, Catumaxomab) has a value

of 0.0; this is because HeteSim only considers an exact

match between the NCIt annotations of each drug. We

note that HeteSim could be extended to further consider

paths through the NCIt, i.e. these will be paths outside the

annotation dataset.

Conceptual similarity measures

In addition to the name of an entity or its position in an

ontology or neighborhood, the semantics encoded in an

ontology can also be considered to compute relatedness.

Conceptual similarity measures assign a value of similarity

to two entities based on a given ontology. They extend

path similarity and consider relationships captured

within an ontology or taxonomy [e.g. nan (6), dps (8) and

dtax (7)]. The intuition is that ontology terms that are

located in proximity and are farther from the root are

more related. Further, entities which share a LCA that is

close to them are also considered similar.

Functional and domain similarity measures

In the context of Biomedicine, domain-specific similarity

measures have been defined to measure relatedness be-

tween entities of a specific abstract type, e.g. between

drugs or genes. Smith and Waterman (28) propose an algo-

rithm to identify sequence alignment in sequences of nu-

cleotides or amino acids. BLAST (http://blast.ncbi.nlm.nih.

gov/) and FASTA (http://www.ebi.ac.uk/Tools/sss/fasta/)
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propose some restrictions to the sequence entries to speed

up the alignment computation process, potentially at the

cost of reducing quality. Furthermore, domain-specific

annotation-based measures rely on knowledge encoded in

specific taxonomies or ontologies to compute the similarity

of two entities. The GO semantic similarity measures

assign values between GO annotation terms of targets

according to the similarity measures proposed by Resnik

(29), Lin (15) and Jiang and Conrath (14). Similarly, the

World Health Organization (WHO) annotation-based

similarity considers the WHO Anatomical, Therapeutic

and Chemical (ATC) classification system (20) to compute

values of similarity between drugs. Furthermore, Othman

et al. (30) use shared annotations of GO with the aim of

obtaining a set of GO terms that have higher term similar-

ity scores for these GO terms. Nevertheless, the proposed

approach is not able to determine similarity of two sets

of GO terms, and in consequence, it can miss structural re-

latedness across the set of annotations.

Hao Ding et al. (31) evaluate the impact of domain-

specific drug–drug and target–target similarity measures

and state-of-the-art machine learning techniques in the

accuracy of predicting interactions between drugs and

targets. The studied approaches rely on the assumption

that similar drugs interact with similar targets, and the re-

ported results suggest that using domain-specific measures

allow to identify drugs and targets that meet this assump-

tion and thus, identify potential new interactions.

Similarly, Zheng et al. (32) present a machine learning-

based technique that relies on existing biomedical similar-

ity measures to predict interactions between drugs and

targets. To conclude the results reported by Perlman et al.

(20), Hao Ding et al. (31) and Zheng et al. (32) suggest

that that existing biomedical similarity measures can pre-

cisely measure relatedness; nevertheless, small changes in

the ontologies or controlled vocabularies used to annotate

the entities may affect their behavior. In contrast, we pro-

pose a general measure that exploits knowledge encoded in

the annotations and exhibits a stable behavior for scientific

entities of a variety of abstract types and properties.

Recently, Couto and Pinto (33) study biomedical ontol-

ogies and propose a classification of similarity measures

according to the type of meaning they are able to consider.

Terminological measures compute relatedness between

two entities by considering similarity between the names

of the classes to which these entities belong, whereas

structural approaches decide similarity depending on the

relationships and attributes of the classes. Furthermore,

extensional measures compute similarity based on the

cardinality of the intersection of the instantiations of the

classes, and the semantic-based approaches take into ac-

count axioms that formalize properties of ontology classes

to decide relatedness of two entities. Additionally, Couto

and Pinto (33) reinforce the statement stated by d’Amato

et al. (34) that establishes limitations of the structural and

extensional measures in considering semantics encoded in

axioms of equivalence and disjunction. We propose a con-

ceptual similarity measure that decides similarity of two

entities based on the perfect matching of the annotations

of the entities. Structural measures are used to decide if

two annotations match or not. Thus, based on Couto and

Pinto (33) classification, AnnSim is a structural measure.

Nevertheless, if a semantic-based measure were used to

compare the annotations, AnnSim is able to overcome

limitations of structural approach and can be considered a

semantic-based similarity measure.

Graph match to compute similarity measures

There have been several solutions using graph match to

compute the similarity of two entities based on their neigh-

borhood graph. Thiagarajan et al. (35) compute related-

ness in terms of a bag of terms that describes each of these

entities. Relationships between the terms are represented

as a bipartite graph where edges are annotated with the

length of the path between each of the terms in the two

bags. Similarity is computed as the optimal bipartite

matching of the bipartite graph based on the length of the

paths. Furthermore, the problem of 1–1 maximum weight

bipartite matching has been tested on specific domains,

e.g. semantic equivalence between two sentences and meas-

uring similarity between shapes for object recognition

(36–38). Belongie et al. (36) measure the similarity be-

tween two shapes; this is computed as the transformation

that best aligns the shapes. Bhagwani et al. (37) find

the similarity of two sentences assuming that a sentence

includes one or multiple words. The similarity between

words is measured using the Lin similarity measure (15)

and the is-a hierarchy of WordNet. Shavitt et al. (38)

propose a measure for peer similarity on peer-to-peer (p2p)

networks.

Although these approaches rely on the computation

of the 1–1 maximum weight bipartite match, they do not

consider information about the structural similarity of

each of the pairs of terms that comprise the bipartite graph.

AnnSim differs from them since it does consider the re-

latedness of the sets of annotations or terms. It uses an

ontology structure to determine ontological relatedness

and extends the dice coefficient to measure set agreement

between the sets of annotations in the 1–1 maximum

weight bipartite matching. The AnnSim score will be

penalized if one of the entities is associated with a large

number of annotations, while only a small number of an-

notations participate in the match. Finally, we note that
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the value of any annotation-based similarity measure will

naturally depend on the accuracy and comprehensiveness

of the underlying annotation, i.e. if the annotations are

not negligibility, inaccurate or subjective (33). As AnnSim

considers the graph structure of the ontology, it has the

potential to be robust and stable in the presence of missing

or incomplete annotations, or similar yet not identical

annotations.

Annotation similarity measure for
annotation graphs

In this section, we present AnnSim, a similarity measure

for entities of an annotation graph. An annotation graph

G¼ (V, E) is a particular graph comprising two type of

nodes in V: scientific entities and terms from an ontology.

Edges in G can be between scientific entities and ontology

terms.

Given two entities c1 and c2 from an annotation graph

G¼ (V, E), we define an annotation similarity measure,

AnnSim, based on their sets of annotations, A1 and A2, re-

spectively. We assume that we know the pairwise similar-

ity between elements of A1 and elements of A2, i.e. sim(a1,

a2)2 [0, 1] for all a12A1 and a22A2. These relationships

between terms in A1 and A2 can be represented as a

weighted bipartite graph BG with two node sets A1 and

A2. An edge between a12A1 and a22A2 has a weight

sim(a1, a2), where sim(a1, a2) is computed using a taxo-

nomic distance measure.

The computation of AnnSim first requires building a bi-

partite graph BG with the links in the Cartesian product

between the set of annotations of two scientific entities,

computing all pairwise similarities and then determining

the 1–1 maximum weight bipartite matching. The time

complexity of computing the 1–1 maximum weight bipart-

ite matching is O(m4), where m is sum of the cardinalities

of A1 and A2. Although the cost of computing the topo-

logical similarity values of each pair of terms is O(n2),

where n is the number of nodes in the ontology. To achieve

an efficient implementation of AnnSim, we reduce the bi-

partite graph BG to a ‘1–1 maximum weight bipartite

matching MWBG’.

Definition 3.1 (39) A 1–1 maximum weight bipartite

matching MWBG¼ (A1|A2, WEr) for a weighted bipart-

ite graph BG¼ (A1|A2, WE) is as follows:

• WEr2WE, i.e. MWBG is a sub-graph of BG.

• the sum of the weights of the edges in WEr is maximized,

i.e.

max
X

ða1;a2Þ2WE

simða1; a2Þ

• for each node in A1 | A2 there is only one incident edge

in WEr, i.e.

–
XjA1j

i¼1
ðai; ajÞ ¼ 1;8j ¼ 1. . .jA2j

–
XjA2j

j¼1
ðai; ajÞ ¼ 1;8i ¼ 1. . .jA1j

Example 3.1 Consider the two drugs Brentuximab

vedotin and Catumaxomab. Figure 3 represents the 1–1

maximum weight bipartite matching produced by the

BlossomIV solver (40).

Definition 3.2 (AnnSim Annotation Similarity) Consider

two entities c1 and c2 annotated with the set of terms A1

and A2 in an annotation graph G. Let BG¼ (A1|A2,

WE) be a weighted bipartite graph for set of terms A1 and

A2. Let MWBG¼ (A1|A2, WEr) be 1–1 maximum

weight bipartite matching for BG. The annotation similar-

ity of c1 and c2 is defined as follows:

AnnSimðc1; c2Þ ¼
2 �
X

ða1;a2Þ2WEr
simða1; a2Þ

jA1j þ jA2j

The above definition is in the style of the well-known

Dice coefficient. The maximal similarity of 1.0 is achieved

if and only if both annotation sets have the same cardinal-

ity (jA1j ¼ jA2j) and all edge weights equal 1. Further,

AnnSim penalizes (large) differences in the cardinality of

A1 and A2. We apply an exact solution to the problem of

computing the 1–1 maximum weight bipartite matching

MWBG from a weighted bipartite graph BG using the

BlossomIV solver (40). To illustrate our proposed solution,

consider the bipartite graph in Figure 3a where conditions

correspond to the annotations of the drugs Brentuximab

vedotin and Catumaxomab. Edges in the bipartite graph

are labeled with values of a given taxonomic similarity

measure that computes similarity of the NCIt terms associ-

ated with these conditions. For example, a value of 0.714

between Hodgkin Lymphoma and Gastric Carcinoma indi-

cates that the NCIt terms corresponding to these two con-

ditions are specific terms and share a LCA, which is also

relatively far from the most general terms of the NCIt, i.e.

the path between the LCA of the NCIt terms for the condi-

tions Hodgkin Lymphoma and Gastric Carcinoma has

a length greater than one. Values of similarity between

conditions are used to compute the 1–1 maximum weight

bipartite matching. Figure 3b presents the 1–1 max-

imum weight bipartite matching for anticancer drugs

Brentuximab vedotin and Catumaxomab produced by the

BlossomIV solver (40). We can observe that in the best

matching, the sum of the similarity of the edges is maxi-

mized. Once the 1–1 maximum weight bipartite matching

is produced, AnnSim is computed as indicated in
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Definition 3.2. For the 1–1 maximum weight bipartite

matching of the drugs Brentuximab vedotin and

Catumaxomab, AnnSim is 0.324 representing certain

grade of similarity between these two drugs.

Theorem 3.1 (Properties of AnnSim) Consider two enti-

ties c1 and c2 annotated with the set A1 and A2 in an anno-

tation graph G then:

• Symmetry: AnnSim(c1, c2)¼AnnSim(c2, c1).

• Self-maximum: AnnSim(c1, c2)2 [0, 1].

• Time complexity: polynomial in the size of G.

Experimental evaluation

We provide details of the datasets and our protocol to

construct ground truth datasets for evaluation. We then pre-

sent evaluation results. The goal of the evaluation is to analyze

the benefits of the knowledge encoded in the annotations that

is exploited by AnnSim for a variety of domains. Table 1 sum-

marizes the datasets. AnnSim source code, the datasets from

Table 1, and instructions for to conduct the experiments in

this section, can be obtained at https://code.google.com/p/

annsim/. Table 2 summarizes the characteristics of the ontolo-

gies used in the evaluation datasets.

Datasets and evaluation roadmap

Dataset 1 Thirty pairs of diseases from the Mayo Clinic

Benchmark; each pair is coded for similarity from 1.0 (least

similar) to 4.0 (most similar). The coding was performed

by 3 physicians (Phy) and 10 medical coders from the

Mayo Clinic (Cod) (6, 41). Diseases were annotated with

NCIt version 12.05d. Dataset 1 is used to compare

(1� dtax) and (1� dps) using SNOMED and MeSH.

(a)

(b)

Figure 3. Bipartite graphs for drugs Brentuximab vedotin and Catumaxomab. For legibility, only the value of the highest matching edges is shown

in (a). (a) Weighted bipartite graph for Brentuximab vedotin and Catumaxomab. (b) 1-1 maximum weight bipartite matching for Brentuximab vedotin

and Catumaxomab.
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Dataset 2 Twelve anticancer drugs in the intersection

of monoclonal antibodies and antineoplastic agents:

Alemtuzumab, Bevacizumab, Brentuximab vedotin,

Cetuximab, Catumaxomab, Edrecolomab, Gemtuzumab,

Ipilimumab, Ofatumumab, Panitumumab, Rituximab and

Trastuzumab. The drugs were associated with conditions

or diseases in clinical trials in LinkedCT circa September

2011 and each disease was linked to its corresponding

term in the NCIt version 12.05d. The number of annota-

tions varies from 1 to 100þ. Dataset 2 is used to compare

AnnSim with (1� dtax), (1�dps) and HeteSim. We recog-

nize that HeteSim performs poorly because it is not de-

signed to consider terms that are close to each other in the

ontology as related. However, we use this baseline since it

is the only measure that can consider paths between nodes

of different types, i.e. drugs and diseases.

Dataset 3 This corresponds to the CESSM collection that

is published through the site http://xldb.di.fc.ul.pt/tools/

cessm/. This collection contains pairs of proteins from

UniProt (http://www.uniprot.org/); they are annotated

with GO terms separated into the GO hierarchies of biolo-

gical process (BP), molecular function and cellular compo-

nent. GO and UniProt are both from August 2008. The

similarity of the pairs of proteins as measured by 11 simi-

larity measures described in Table 3 are available. Dataset

3 is used to obtain the Pearson’s correlation for AnnSim

with respect to ‘EC’ similarity (44), ‘Pfam’ similarity (45)

and sequence similarity ‘SeqSim’ (9). The correlation coef-

ficient of AnnSim will be compared with the correlation

coefficients of 11 semantic similarity measures for the three

standards of evaluation: EC, Pfam and SeqSim.

Dataset 4 This corresponds to a collection of interactions

between drugs and targets from DrugBank (http://www.

drugbank.ca/). This dataset was collected by Perlman et al.

(20) and comprises 310 drugs, 210 targets and 1306

interactions as table 4 shows. Both drugs and targets are

associated with domain-specific similarity measures; there

are five measures for drug–drug pairs and three measures

for target–target pairs, as described in Table 5. Dataset 4 is

used to evaluate the quality of AnnSim with respect to a

gold standard drug–drug similarity measure.

For each pair of drugs in Dataset 4, we compute

AnnSim with respect to the set of associated targets, i.e.

the targets are interpreted as the annotations of the drugs.

The target–target similarity measures are also considered

by AnnSim.

The gold standard for the similarity of two drugs

is based on the Jaccard Index (47) of the categories of the

drugs published by DrugBank, i.e. the size of the intersec-

tion divided by the size of the union of the set of categories.

In DrugBank, drug categories correspond to therapeutic or

general categories manually collected from PubMed (http://

www.ncbi.nlm.nih.gov/pubmed/), STAT!Ref (AHFS)

(http://online.statref.com/UserLogin.aspx?Path¼/Default.

aspx&Product¼StatRef) and e-Therapeutics (http://www.

e-therapeutics.ca/).

Dataset 5 Collection of drug and target interactions used

in the experimental study reported by Hao Ding et al. (31).

The dataset comprises four subsets of nuclear receptors,

GPCRs, ion channels and enzymes; this data are obtained

from KEGG BRITE (22), BRENDA (23), SuperTarget (24)

and DrugBank (25). Pairs of drugs are associated with

similarity computed from the chemical structures of drugs

[obtained from KEGG LIGAND (22)] by using SIMCOMP

(48). Target similarity corresponds to target sequences

[obtained from KEGG GENES (23)] by using a normalized

Smith–Waterman score (9). As with Dataset 4, this dataset

is used to evaluate the quality of AnnSim with respect to

a well-known drug–target gold standard. Table 6 shows

statistics of the dataset 5.

Effectiveness in dataset 1

The goal of the experiment is to tune the performance of

(1� dtax) and (1� dps) with respect to multiple ontologies.

This study will reveal if AnnSim scores will be stable across

different taxonomic measures and ontologies.

Table 1. Description of the datasets

Dataset Description

1 Thirty pairs of diseases from the Mayo Clinic

benchmark

2 Twelve anticancer drugs in the intersection of monoclo-

nal antibodies and antineoplastic agents

3 Collection of pairs of proteins from UniProta

4 Collection of drugs and targets interactions from

DrugBank,b introduced by Perlman et al. (20)

5 Collection of drug and target interactions collected by

Yamanishi et al. (21)

ahttp://www.uniprot.org/.
bhttp://www.drugbank.ca/.

Table 2. Description of the ontologies used in the evaluation

datasets

Ontology NCIt SNOMED

CT

MeSH GO

Version 12.05d June 2012 June 2012 August 2008

Number of nodes 93 788 395 346 26 580 26 539

Number of arcs 104 439 539 245 36 212 43 213

Used in Dataset 1 and 2 1 1 3
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We annotated the 30 diseases of Dataset 1 with their cor-

responding terms in SNOMED, MeSH and the NCIt. Table

7 shows all pairs of diseases. The scores determined by

(1� dtax) and (1� dps) are compared with the human

ground truth evaluation of physicians and coders. Table 8

reports on this comparison. Additionally, Table 9 reports on

the Normalized Discounted Cumulative Gain (49) (nDCG)

between the ranking of the results using (1� dtax) and

Table 3. Similarity measures for pairs of proteins in dataset 3

simUI (UI) Jaccard index on the GO annotations of the proteins.

simGIC (GI) (17) Jaccard index where GO annotations of the compared proteins are weighted by their IC.

Resnik (18, 29) Average (RA) Resnik’s measure where similarity of two terms is the average of IC of pairs of common

ancestors.

Resnik (29, 42) Maximum (RM) Resnik’s measure where similarity corresponds to the maximum value of IC of pairs of

common ancestors.

Resnik (29, 43) Best-Match Average (RB) Resnik’s measure where similarity corresponds to the average of IC of pairs of disjunctive

common ancestors (DCA).

Lin (15, 18) Average (LA) Lin’s measure that relates IC of the average of IC of pairs of common ancestors to IC of

compared terms.

Lin (15, 42) Maximum (LM) Lin’s measure that relates IC of the maximum value of IC of pairs of common ancestors to

IC of compared terms.

Lin Best-Match (15, 43) Average (LB) Lin’s measure that relates the IC of the average of the IC of pairs of DCA to IC of compared

terms.

Jiang and Conrath (18, 14) Average (JA) Jiang and Conrath’s measure where IC of average of IC of pairs of common ancestors is

related to IC of compared terms.

Jiang and Conrath (14, 42) Maximum (JM) Jiang and Conrath’s measure where IC of the maximum IC of pairs of common ancestors is

related to IC of compared terms.

Jiang and Conrath (14, 43) Best-Match

Average (JB)

Jiang and Conrath’s measure where the IC of the average IC of pairs of DCA is related to

IC of compared terms.

Table 4. Statistics of dataset 4 obtained from Perlman et al. (20)

Number of drugs Number of targets Number of drug–target interactions

315 250 1306

Table 5. Similarity measures for drugs and targets in dataset 4 (20)

Drug–drug similarity measures

Chemical based Jaccard similarity of the SMILES fingerprints of the drugs.

Ligand based Jaccard similarity between protein receptor families extracted via matched ligands with drugs’

SMILES on the SEA tool.

Expression based Spearman’s correlation of gene expression responses to drugs using connectivity map.

Side-effect-based Jaccard similarity between drugs side-effects from SIDER.

Annotation based Semantic similarity of drugs based on the WHO ATC classification system.

Target–target similarity measures

Sequence based Smith and Waterman scores (9) computed by BLASTa and normalized as suggested in Ref. 46.

Protein based Shortest paths between human protein–protein interactions of the drugs.

GO based Semantic similarity based on GO annotations computed using csbl.go package of R.b

ahttp://blast.ncbi.nlm.nih.gov/.
bhttp://csbi.ltdk.helsinki.fi/csbl.go/.

Table 6. Statistics of dataset 5 downloaded from http://web.

kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/ (21)

Statistics Nuclear

receptor

GPCR Ion

channel

Enzyme

Number of drugs (D) 54 23 210 445

Number of targets (T) 26 95 204 664

Number of D-T interactions 90 635 1476 2926
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(1� dps) and the ground truth from a physician panel or a

coder panel. The nDCG correlations take values between

0.0 and 1.0, where a value close to 1.0 represents a high cor-

relation of the ranking induced by the similarity measure

and the one in the ground truth.

Given the order of the pairs of diseases induced by the

values of (1� dtax) and (1� dps), a high value of nDCG

of a given pair highly ranked by the physicians (or coders)

indicates that the pair appears at the top of the ranking

list. A low value of nDCG reflects that the relevant pair

appears at the bottom of the ranking list. We can observe

that both (1� dtax) and (1�dps) have similar values of

nDCG across SNOMED, MeSH and NCIt, for both

physicians and coders. This reveals that both measures are

successful at computing high values of similarity for the

pairs that were also ranked highly by the physicians and

coders. These values also suggest that both measures have

similar performance.

To summarize, the two measures to compare taxonomic

relatedness perform well across multiple ontologies, and

their performance is matched.

Effectiveness in dataset 2

The goal of this experiment is to study the impact of using

the structural knowledge of shared annotations between

two entities versus just considering the structural know-

ledge of these entities; we evaluate the impact of the NCIt

annotations of drugs on Dataset 2 on the values of similar-

ity. When all the drugs belong to the same family, a good

similarity measure should assign high values of pair-wise

similarity. We consider both topological measures

(1� dtax), (1� dps) and HeteSim to study the effects of the

Table 7. Identifiers of the 30 pairs of diseases from the Mayo

Clinic benchmark

ID Medical terms

1 Renal insufficiency – kidney failure

2 Heart – myocardium

3 Stroke – infarction

4 Abortion – miscarriage

5 Delusions – schizophrenia

6 Congestive heart failure – pulmonary edema

7 Metastasis – adenocarcinoma

8 Calcification – stenosis

9 Diarrhea – stomach cramps

10 Mitral stenosis – atrial fibrillation

11 Chronic obstructive pulmonary disease – lung infiltrates

12 Rheumatoid arthritis – lupus

13 Brain tumor – intracranial hemorrhage

14 Carpal tunnel syndrome – osteoarthritis

15 Diabetes mellitus – hypertension

16 Acne – syringe

17 Antibiotic – allergy

18 Cortisone – total knee replacement

19 Pulmonary embolism – myocardial Infarction

20 Pulmonary fibrosis – lung Cancer

21 Cholangiocarcinoma – colonoscopy

22 Lymphoid hyperplasia – laryngeal cancer

23 Multiple Sclerosis – psychosis

24 Appendicitis – osteoporosis

25 Rectal polyp – aorta

26 Xerostomia – liver cirrhosis, alcoholic

27 Peptic ulcer – myopia

28 Depression – cellulitis

29 Varicose vein – entire knee meniscus

30 Hyperlipidemia – metastasis

Table 8. Similarity dataset 1: (1 – dtax) and (1 – dps) for

SNOMED, MeSH and NCIt

ID Phy Cod SNOMED MeSH NCIt

1 – dtax 1 – dps 1 – dtax 1 – dps 1 – dtax 1 – dps

1 4.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00

2 3.30 3.00 0.77 0.64 0.80 0.67 0.20 0.11

3 3.00 2.80 0.31 0.31 0.80 0.67 0.87 0.78

4 3.00 3.30 0.89 0.80 0.00 0.00 0.92 0.86

5 3.00 2.20 0.00 0.00 0.00 0.00 0.80 0.67

6 3.00 1.40 0.50 0.46 0.00 0.00 0.59 0.42

7 2.70 1.80 0.83 0.71 0.25 0.14 0.00 0.00

8 2.70 2.00 0.55 0.38 0.00 0.00 0.40 0.25

9 2.30 1.30 0.29 0.17 0.75 0.63 0.42 0.30

10 2.30 1.30 0.63 0.46 0.50 0.33 0.53 0.36

11 2.30 1.90 0.70 0.63 — — 0.13 0.07

12 2.00 1.00 0.50 0.33 0.00 0.11 0.86 0.75

13 2.00 1.30 0.63 0.57 0.63 0.50 0.17 0.09

14 2.00 1.00 0.33 0.33 0.00 0.00 0.33 0.20

15 2.00 1.00 0.64 0.50 0.00 0.00 0.17 0.09

16 2.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

17 1.70 1.00 0.00 0.00 0.00 0.00 0.00 0.00

18 1.70 1.00 0.00 0.00 0.00 0.00 0.00 0.00

19 1.70 1.20 0.36 0.42 0.29 0.29 0.63 0.46

20 1.70 1.40 0.75 0.63 0.67 0.50 0.60 0.50

21 1.30 1.00 0.00 0.00 0.00 0.00 0.00 0.00

22 1.30 1.00 0.43 0.33 0.00 0.00 0.36 0.22

23 1.00 1.00 0.44 0.29 0.00 0.00 0.33 0.20

24 1.00 1.00 0.31 0.31 0.00 0.00 0.50 0.36

25 1.00 1.00 0.00 0.00 — — 0.00 0.00

26 1.00 1.00 0.00 0.00 0.00 0.00 0.14 0.08

27 1.00 1.00 0.23 0.29 0.00 0.00 0.15 0.08

28 1.00 1.00 0.00 0.00 0.00 0.00 0.31 0.18

29 1.00 1.00 0.13 0.07 — — 0.00 0.00

30 1.00 1.00 0.33 0.20 0.00 0.00 0.00 0.00

Empty cells (—) represent terms that do not appear in the ontology. Values

highlighted in bold show high correlation between the relevance given by the

physician, coder and the measures. IDs are presented in Table 7
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structural information of the entities. Intuitively, HeteSim

would detect that two drugs are similar if they have many

(identical) diseases in common. HeteSim will perform

poorly when drugs do not treat identical diseases. In con-

trast, AnnSim also considers diseases that are not identical

but are similar based on the topology of the NCIt annota-

tions. Finally, (1� dtax) and (1� dps) only consider the

topology of the drug terms in the NCIt and will ignore the

annotation evidence.

First, we retrieved from the LinkedCT dataset

(LinkedCT.org, November 2011) interventions (diseases)

associated with these drugs and consider as annotations

the corresponding set of terms in the NCIt, i.e. each drug is

annotated with the set of NCIt terms that correspond to

the interventions related to these drugs in LinkedCT; the

cardinality of these sets varies from 1 to 136. Table 10 re-

ports on the values of these four similarity measures when

Alemtuzumab is compared with the 11 other drugs in the

dataset. We can observe that HeteSim consistently assigns

very low values of similarity. Although all these drugs are

used to treat different types of cancers, Alemtuzumab

shares only a small number of identical diseases with the

rest of the 11 drugs and this confuses HeteSim. AnnSim,

however, assigns higher values because is able to detect

that many of the diseases treated with Alemtuzumab share

similar topological properties in NCIt with the diseases

treated by the rest of the drugs. What is notable is that the

taxonomic measures (1�dtax) and (1� dps) only consider

the topology of the drug terms in the NCIt and they ignore

the annotation evidence. Thus, they return uniformly high

similarity scores. The column ‘Annotation Count’ of

Table 11 summarizes the number of annotations for each

drug; it is clear that there is a wide variation in the diseases

that are treated by these drugs. Hence, the inability to

exploit the annotation evidence does not allow the taxo-

nomic measures to differentiate between these drugs.

Table 12 summarizes the pairwise scores for the four

measures for each drug, compared with the other 11 drugs.

For each drug, the score is used to rank the other 11 drugs.

Finally, Table 13 presents SRank1 and SRank2. SRank1 is

the Spearman’s correlation for AnnSim and (1�dtax)

and SRank2 is the correlation for AnnSim and (1�dps).

We observe that HeteSim consistently assigns very low

values of similarity. AnnSim again assigns higher values

overall, this may be caused by the large variability of anno-

tations of these drugs, i.e. the cardinality of the annota-

tions considerably differs, and the pairwise intersection of

the annotations is small. Values of SRank1 and SRank2 are

higher than 0.5, suggesting that the annotation evidence

is consistent with the topological relationships of the drugs

in the NCIt.

We note on a couple of outlier cases. Both Edrecolomab

and Gemtuzumab have a single annotation, Colorectal

Carcinoma and Acute Myeloid Leukemia, respectively.

Although these diseases are different, the drugs have very

similar and low values for AnnSim. We note that the

drugs have high values for the taxonomic measures;

e.g. [1� dtax(Colorectal Carcinoma, Acute Myeloid

Leukemia)] is equal to 0.714. Since dtax meets the triangle

inequality property (7), any disease that is similar to one

Table 9. nDCG of (1 – dtax) and (1 – dps)

Measure SNOMED MeSH NCIt

Physician Coder Physician Coder Physician Coder

1�dtax 0.837 0.961 0.977 0.957 0.959 0.959

1�dps 0.966 0.963 0.976 0.987 0.959 0.959

Table 10. Pairwise comparison of alemtuzumab with the rest

of the 11 drugs

Pair drug AnnSim 1 – dtax 1 – dps HeteSim

Alemtuzumab - Bevacizumab 0.263 0.670 0.500 0.001

Alemtuzumab - Brentuximab

vedotin

0.140 0.364 0.222 0.000

Alemtuzumab - Catumaxomab 0.199 0.364 0.222 0.000

Alemtuzumab - Cetuximab 0.359 0.727 0.571 0.000

Alemtuzumab - Edrecolomab 0.037 0.727 0.571 0.000

Alemtuzumab - Gemtuzumab 0.046 0.500 0.333 0.000

Alemtuzumab - Ipilimumab 0.482 0.727 0.571 0.005

Alemtuzumab - Ofatumumab 0.468 0.727 0.571 0.002

Alemtuzumab - Panitumumab 0.422 0.727 0.571 0.000

Alemtuzumab - Rituximab 0.409 0.727 0.571 0.002

Alemtuzumab - Trastuzumab 0.319 0.727 0.571 0.000

Average 0.286 0.635 0.479 0.001

HeteSim assumes perfect matching between annotations and assigns low

similarity values.

Table 11. Identifiers of the 12 anticancer drugs in the intersec-

tion of monoclonal antibodies and antineoplastic agents

ID Drug Annotation count

1 Alemtuzumab 39

2 Bevacizumab 136

3 Brentuximab vedotin 3

4 Catumaxomab 7

5 Cetuximab 50

6 Edrecolomab 1

7 Gemtuzumab 1

8 Ipilimumab 22

9 Ofatumumab 18

10 Panitumumab 22

11 Rituximab 100

12 Trastuzumab 18
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disease will also be similar to the other. We further note

that the SRank1 and SRank2 have a negative score

for Edrecolomab but the score is closer to 0.5 for

Gemtuzumab. This reflects that further work is needed

to tune these measures to consider outliers.

Additionally, 7 of these 12 drugs were associated with

diseases from the DrugBank SPARQL endpoint (http://

wifo5-03.informatik.uni-mannheim.de/drugbank/snorql/),

and the corresponding NCIt terms of these diseases were

considered as the annotations of these drugs. These sets

are smaller, share annotations and are more uniform in

terms of size, i.e. the cardinality varies from 4 to 14.

Table 14 summarizes the pairwise scores for AnnSim

for each of the seven drugs, compared with the other six

drugs. We can observe that given the homogeneity of

these annotations, AnnSim is able to assign higher values

of similarity. These results suggest that annotations impact

on the values of similarity. Nevertheless, the effects may

vary considerably depending on the characteristics of the

annotations.

Details of drugs in Dataset 2 as well as their annotations

and pairwise values of AnnSim can be found at http://

pang.umiacs.umd.edu/AEDdemo.html.

Effectiveness in dataset 3

The goal of this experiment is to analyze the correlation of

AnnSim with respect to three standards of evaluation: EC,

Pfam and SeqSim. First, we compute AnnSim for the pairs

of proteins in Dataset 3 and then, we use the online tool

Table 12. Average similarity and standard deviation (avg; std) when each is compared with 11

other drugs (antineoplastic agents and monoclonal antibodies)

ID AnnSim (1 – dtax) (1 – dps) HeteSim

1 (0.286; 0.161) (0.635; 0.150) (0.479; 0.146) (0.001; 0.002)

2 (0.206; 0.173) (0.636; 0.152) (0.479; 0.146) (0.002; 0.002)

3 (0.206; 0.125) (0.433; 0.093) (0.284; 0.091) (0.002; 0.007)

4 (0.244; 0.106) (0.416; 0.066) (0.269; 0.061) (0.002; 0.003)

5 (0.303; 0.189) (0.691; 0.163) (0.547; 0.171) (0.003; 0.004)

6 (0.157; 0.211) (0.691; 0.162) (0.547; 0.171) (0.004; 0.014)

7 (0.157; 0.219) (0.539; 0.045) (0.375; 0.046) (0.000 0.000)

8 (0.363; 0.208) (0.691; 0.163) (0.547; 0.171) (0.004; 0.003)

9 (0.302; 0.159) (0.692; 0.162) (0.547; 0.171) (0.003; 0.007)

10 (0.358; 0.212) (0.692; 0.162) (0.547; 0.171) (0.007; 0.014)

11 (0.222; 0.169) (0.691; 0.163) (0.547; 0.171) (0.001; 0.001)

12 (0.304; 0.175) (0.692; 0.162) (0.547; 0.171) (0.002; 0.003)

Average (0.259; 0.176) (0.625; 0.137) (0.476; 0.141) (0.003; 0.005)

IDs are presented in Table 11.

Table 13. Spearman’s correlation

for AnnSim and (1�dtax) (SRank1)

and the correlation for AnnSim and

(1�dps) (SRank2)

ID SRank1 SRank2

1 0.625 0.625

2 0.505 0.543

3 0.752 0.752

4 0.348 0.339

5 0.523 0.507

6 �0.318 �0.318

7 0.511 0.466

8 0.502 0.502

9 0.382 0.411

10 0.514 0.525

11 0.311 0.311

12 0.350 0.364

Average 0.417 0.419

IDs are presented by Table 11.

Table 14. Average similarity and standard devi-

ation (avg; std) of AnnSim for 7 out of the 12

anticancer drugs in the intersection of monoclo-

nal antibodies and antineoplastic agents

ID Drug AnnSim values

1 Alemtuzumab (0.757; 0.315)

2 Bevacizumab (0.702; 0.285)

5 Cetuximab (0.738; 0.143)

7 Gemtuzumab (0.757; 0.316)

10 Panitumumab (0.254;0.130)

11 Rituximab (0.757; 0.315)

12 Trastuzumab (0.636; 0.156)

Average (0.661; 0.243)

Annotations correspond to NCIt terms of the diseases asso-

ciated with these drugs at the DrugBank SPARQL endpoint.
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Collaborative Evaluation of GO-based Semantic Similarity

Measures (CESSM) to determine the correlation of

AnnSim to the three standards of evaluation and to the se-

mantic similarity measures presented in Table 3. These

similarity measures extend Resnik’s (29), Lin’s (15) and

Jiang and Conrath’s (18) measures to consider GO annota-

tions of the compared proteins and the IC of these annota-

tions; i.e. they use more domain knowledge (features)

than AnnSim. Additionally, pairwise combinations of the

annotations and their common ancestors are considered.

The average combination which is labeled A, considers

the average of the ICs of pairs of common ancestors.

Campo et al. (42) applies the corresponding measure,

i.e. the Resnik’s (29), Lin’s (15) and Jiang and Conrath’s

(18) measures, to the maximum value of IC of pairs of com-

mon ancestors; these combined measures are distinguished

with the labeled M. Further, Couto et al. (43) propose a

measure which only the best-match average of the ICs of

pairs of disjunctive common ancestors (DCA); the new

measures are labeled B. Finally, the set-based measures

simUI and simGIC (17) that extend the Jaccard index are

also considered in the study.

Figure 4a and b reports the results of the comparison

restricted to the GO BP terms. Figure 4a compares AnnSim

with the GO-based extensions of the Resnik’s (29), Lin’s

(15) and Jiang and Conrath’s (18) measures. Table 15

presents the Pearson’s correlation of AnnSim and the 11

semantic similarity measures presented in Table 3.

Correlations of the column SeqSim on the Table 15 corres-

pond to the Figure 4a. We observe that AnnSim provides

the highest correlation coefficient with respect to Pfam.

Furthermore, the correlation coefficient between SeqSim

and AnnSim is the fourth highest and between EC and

AnnSim is the fifth highest. AnnSim is more correlated

to SeqSim, EC and Pfam than all the extensions of the Jiang

and Conrath’s measure (18). Nevertheless, simGIC, simUI

and RB exhibit better performance than AnnSim with re-

spect to SeqSim and EC similarities. LB has higher correl-

ation than AnnSim with EC similarity. Similar to AnnSim,

these measures consider the GO annotations of the proteins.

However, they additionally exploit information context of

the GO annotations in conjunction with the most inform-

ative ancestors of these annotations; thus, a more precise es-

timate of the relatedness of two proteins is computed. Table

15 presents the P values for the correlation coefficients of

AnnSim considering the null hypothesis that AnnSim coeffi-

cient is equal to the coefficients of the similarity measures

presented in Table 3. To compute the P value, we used the

Fisher’s z transformation and a one-sample z test for a cor-

relation coefficient, described in (51) (eqs. 11.21 and

11.22). Fisher’s statistics has been used in previous semantic

similarity studies (19, 51). AnnSim presents a statistically

significant increase of the correlation coefficients (P

value<0.01) for all correlation coefficients except for four.

AnnSim obtained low statistical significance increase for the

correlations of GI and UI with respect to EC and Pfam, be-

cause the correlations of AnnSim, GI and UI are similar in

for EC and Pfam.

Figure 4b reports on the Pearson’s correlation between

AnnSim and SeqSim of 0.65; this indicates a moderately

strong relationship. These results suggest that, as expected,

the domain-specific measures that use additional know-

ledge exhibit the best performance. However, the behavior

of AnnSim reflects that even it is a general measure, it

is able to successfully exploit knowledge encoded in the

protein annotations.

Effectiveness in datasets 4 and 5

The goal of this experiment is to evaluate the quality of

AnnSim with respect to domain-specific similarity meas-

ures. We consider Datasets 4 and 5 that contain drug and

target interactions and evaluate the quality of AnnSim and

domain-specific measures in terms of the quality assessed

by the state-of-the-art clustering techniques when these

measures are used. Diverse clustering algorithms provided

by the WEKA (http://www.cs.waikato.ac.nz/ml/weka/)

tool are used in the evaluation. Furthermore, we built our

gold standard clustering by grouping together in a cluster

only drugs that share exactly the same set of categories, i.e.

the average Category-based Score of our gold standard

clustering is 1.0. Information about the category of the

drugs was downloaded from the DrugBank website (http://

www.drugbank.ca/ February 2014).

First, for drug–target interactions in Dataset 4, we compare

the quality of AnnSim and five drug–drug similarity measures

in Table 5 in terms of similarity of clusterings produced using

AnnSim and these measures. Clustering similarity is computed

with two different measures: average Category-based Score (C)
and Jaccard Clustering Index (J ) (52).

Given a clustering C of drugs, the average Category-

based Score, C(C), corresponds to the average of the

‘Category-based’ measure for each pair of drugs in the

clusters of C. Values of C(C) ranges between 0.0 and 1.0.

A value equal to 0.0 indicates that there is no intersection

between the categories of the pairs of drugs in the clusters

of C, whereas a value closed to 1.0 represents that almost

all the pairs of drugs in each cluster of C share exactly the

same categories. Table 16 illustrates the results of comput-

ing the average Category-based Score measure on the clus-

terings produced by the Expectation Maximization (EM)

clustering algorithm (53) of WEKA. We ran EM for each

of the five drug–drug similarity measures and for three ver-

sions of AnnSim, i.e. one version per target–target
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Figure 4. Comparison of AnnSim with SeqSim and similarity measures from Table 3. Results are produced by CESSM for GO BP terms. (a) Average

values for AnnSim, the measures in Table 3 and SeqSim. (b) Plot of AnnSim and SeqSim scores (Pearson’s correlation of 0.65). The similarity meas-

ures are simUI (UI), simGIC (GI), Resnik’s Average (RA), Resnik’s Maximum (RM), Resnik’s Best-Match Average (RB), Lin’s Average (LA), Lin’s

Maximum (LM), Lin’s Best-Match Average (LB), Jiang and Conrath’s Average (JA), Jiang and Conrath’s Maximum (JM), Jiang and Conrath’s Best-

Match Average (JB).
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similarity measure ‘seq’, ‘dist’ and ‘go’. EM was run for

10M of iterations until 259 clusters were produced. We

can observe that all the clusterings are characterized by

high values of the average Category-based Score. These

high values indicate that both similarity measures and the

EM clustering algorithm are able to placed together in a

cluster drugs that share the majority of their categories.

Particularly, we can highlight the average Category-based

Score value of the clustering of ATC and the values of

AnnSimseq, AnnSimdist and AnnSimgo-based clusterings.

First, both ATC and AnnSim rely on annotations to meas-

ure the relatedness of drugs. Because ATC is a domain-

specific measure, it is able to better capture the particular

properties of the drugs. Nevertheless, although AnnSim is

a general-purpose measure, it can exhibit good quality in-

dependently of the target–target measure used to compute

the similarity of the targets that annotate the drugs. This

result supports the assumption that AnnSim is stable even

if properties of the drugs change.

It is important to notice that clusterings of ATC,

Chem., Ligand, CMap and SideEff. comprise a large

Table 15. Pearson’s correlation coefficient between the three

standards of evaluation and the 12 similarity measures on

dataset 3

Similarity

measure

SeqSim P EC P Pfam P

GI 0.7733 <0.01 0.3981 0.4468 0.4547 0.1593

UI 0.7304 <0.01 0.4023 0.1810 0.4505 0.0440

RA 0.4068 <0.01 0.3022 < 0.01 0.3232 <0.01

RM 0.3027 <0.01 0.3076 <0.01 0.2627 <0.01

RB 0.7397 <0.01 0.4444 <0.01 0.4588 <0.01

LA 0.3407 <0.01 0.3041 <0.01 0.2866 <0.01

LM 0.2540 <0.01 0.3134 <0.01 0.2064 <0.01

LB 0.6369 < 0.01 0.4352 <0.01 0.3727 <0.01

JA 0.2164 <0.01 0.1931 <0.01 0.1732 <0.01

JM 0.2350 <0.01 0.2541 <0.01 0.1649 <0.01

JB 0.5864 <0.01 0.3707 <0.01 0.3319 <0.01

AnnSim 0.6510 – 0.3926 – 0.4643 –

The P values represent the probability of obtaining the correlation coeffi-

cient for AnnSim, EC and Pfam assuming the correlation coefficient of other

11 similarity measures. The higher correlation in each standard of evaluation

is highlighted in bold.

Table 16. Average similarity of the 259 clusters of the clustering obtained using the an EM algorithm

for each drug–drug measure on 310 drugs

AnnSimseq AnnSimdist AnnSimgo ATC Chem. Ligand CMap SideEff.

0.8939 0.8939 0.8939 0.9129 0.8737 0.8727 0.8304 0.8746

Figure 5. Distribution of the number of clusters of the clustering obtained by four drug–drug similarity measure.
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number of clusters with one drug, whereas the three ver-

sions of AnnSim produce larger-sized clusters. Figure 5a–d

presents the distribution of the number of clusters with a

given number of drugs for clustering of AnnSimseq, ATC,

Chem. and SideEff., respectively.

Although AnnSimseq clustering is composed of larger-

sized clusters, e.g. clusters with 6, 8 and 10 drugs, the

drugs on these clusters share a high number of categories.

Table 17 presents the drug frequency per category in each

cluster, for clusters with 10 and 6 drugs. We can observe

that the majority of the drugs in each of these clusters,

share at least one category. Additionally, drugs in the clus-

ters related with the categories highlighted in bold, share at

least on target. For example, drugs in the cluster with 10

elements that are associated with the categories ”Anti-

inflammatory Agents, Steroidal”, Anti-in-

flammatory and Anti-inflammatory Agents, are all

related to the target Glucocorticoid receptor. Also,

drugs associated with the category Glucocorticoids

are related to the same target. This pattern suggests that

drugs in the same cluster sharing at least one category, also

share at least one target. This pattern may correspond to a

potential association discovered by AnnSim that could be

not observed in the other clusterings.

We also measure the quality of the clustering of these

similarity measures, based on how similar these clusterings

are to the ‘gold standard’ clustering. Figure 6 presents the

drug frequency distribution of our gold standard cluster-

ing. As can be observed, our gold standard clustering is

composed of clusters of up to five drugs and more than

200 clusters with only one drug.

We use the Jaccard Clustering index to compare all these

clusterings of the drugs with respect to our gold standard

clustering. Jaccard Clustering index (J ) measures similarity

of two clusterings in terms of the number of pairs that are in

the same cluster in the clusterings. J (C1,C2) is computed as

the number of pairs that are in the same cluster in C1 and

C2 divided by, this number plus the number of pairs that

are in one cluster in either C1 or C2, but not in both. Values

of Jaccard index are in the range of [0.0;1.0]. J (C1,C2) is

1.0, if and only if, the pairs of drugs that appear together in

a cluster in C1 are exactly the same to the pairs that appear

in a cluster in C2, i.e. C1 and C2 have exactly the same clus-

ters. On the other hand, J (C1,C2) is 0.0, if and only if,

there is no pair of drugs that appear together in one cluster

of C1 (respectively, C2) and appear together in a cluster of

C2 (respectively, C1).

Table 18 reports on the Jaccard Clustering index of all

the eight clusterings with respect to our gold standard clus-

tering. We can observe that the versions of AnnSim have

the lowest values of this measure. This behavior is caused

by the distribution of clusters generated by AnnSim, where

drugs that share one category instead of all their categories,

are placed in the same cluster. Although this may look a

disadvantage of AnnSim, we consider that grouping

terms that share at least one property can be useful in

data mining process where the discovery of properties of simi-

lar but no equal objects, is an important task. For example,

Table 17. Description of three clusters obtained using

AnnSim measure and the EM clustering algorithm of WEKA

No. of elements

in the cluster

DrugBank drug

categories In the cluster

No. of drugs

with this

category

10 Immunosuppressive agents 1

Neuroprotective agents 1

Anti-inflammatory agents 10

Antipruritic agents 1

Corticosteroid 2

Antiemetics 1

Anti-asthmatic agents 1

Anti-INFLAMMATORY 1

“Anti-inflammatory agents, steroidal 1

Anti-allergic agents 1

Steroidal 1

Corticosteroids 2

Glucocorticoids 8

Adrenergic agents 3

Antineoplastic agents 1

“Antineoplastic agents 1

“Corticosteroids 1

6 Sympathomimetic 1

Anti-anxiety agents 1

Vasodilator agents 1

Adrenergic beta-antagonists 5

Sympathomimetics 1

Anti-arrhythmia agents 4

Cardiotonic agents 1

EENT drugs 1

Adrenergic beta-agonists 1

Sympatholytics 3

Antihypertensive agents 4

6 Nucleic acid synthesis inhibitors 3

“Antibiotics 1

Anti-bacterial agents 1

Enzyme inhibitors 1

Anti-infectives 2

Photosensitizing agents 1

Antibiotics 1

Anti-infective agents 3

Analgesics 1

Quinolones 2

“Anti-infective agents 1

Antitubercular agents 1

Antineoplastic agents 2

One cluster with 10 elements and two with six elements are shown.

We highlight in bold similar category terms or terms with high frequency.

Cluster with nine elements, their targets and frequency of interactions.
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we could suggest a potential relationship between Anti-in-

flammatoryAgents drugs andGlucocorticoidsdrugs,

as well as, between their targets.

Similarly, for drug–target interactions in Dataset 5, we

compute clusterings of the drugs that comprise the four

sub-sets of the dataset. Clusterings are computed for both

AnnSim and the drug–drug measure computed by

SIMCOMP (‘Sim’). Because there are drugs in Dataset 5

that are not associated with a category in DrugBank, we

could not build the baseline partition as in the previous

experiment. Alternatively, we evaluate the quality of the

clusterings based on intra- and inter-similarity measures

that indicate how similar are the drugs placed in one clus-

ters and how distant are the centroids of the clusters that

comprised the clusterings, respectively. The center-based

algorithm k-means provided by WEKA is used to compute

the clusters with an input of 259 centers. We compute two

clustering similarity measures: the Davies–Bouldin index

(54) and the ‘Coupling’ measure (55).

The Davies–Bouldin index (54) relies on the values of a

radio of intra-cluster and between-cluster distances. Given

a clustering of k clusters, the Davies–Bouldin index is

defined as follows:

1

k

Xk

i¼1

ðmaxi6¼jfDi;jgÞ

where, Di,j is the intra-to-between cluster distance ratio

for the ith and jth cluster, i.e. Di;j ¼ diþdj

di;j
. A value of di

corresponds to the average distance between each point

in the ith cluster and the centroid of the ith cluster.

Although a value of di,j is the average distance between

each point in the ith cluster and the centroid of the jth

cluster, we use the Euclidean distance to compute the dis-

tance between centroids and a point and a centroid.

The maximum value of Di,j represents the worst-case intra-

to-between cluster ratio for the ith cluster. Optimal cluster-

ings are characterized by the smallest Davies–Bouldin

index value.

On the other hand, the Coupling measure (55) indicates

the similarity of the entities in two different clusters. Given

a clustering of k clusters, the Coupling measure is defined

as follows:

X
i>j

SimðCi;CjÞ
kðk�1Þ

2

where, Ci and Cj are the centroids of the ith and jth clus-

ters, respectively. We use the cosine similarity to compute

Sim(Ci,Cj). Optimal clusterings are characterized by the

lowest values of the Coupling measure, i.e. clusterings

whose centroids are not similar. Table 19 illustrates the

values of the intra-clustering similarity Davies–Bouldin

index and the values of the inter-clustering Coupling meas-

ure. We can observe that for the Davies–Bouldin index and

the Coupling measure, AnnSim and Sim have low values.

Nevertheless, AnnSim slightly surpasses Sim in the two

measures; these results suggest that AnnSim-based cluster-

ing is closer to the optimal clustering than the Sim-based

clustering.
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Figure 6. Distribution of the number of cluster of our gold standard

clustering.

Table 18. Jaccard similarity coefficient between each drug–drug measure clustering and the ground

truth clustering

AnnSimseq AnnSimdist AnnSimgo ATC Chem. Ligand CMap SideEff.

0.5657 0.5657 0.5657 0.7175 0.7512 0.7431 0.7045 0.7211

Table 19. Comparison of clusterings produced by K means

with 259 centers for AnnSim and Sim (drug–drug similarity

measure computed by SIMCOMP)

Enzyme GPCR ion nr

AnnSim Sim AnnSim Sim AnnSim Sim AnnSim Sim

Davies–Bouldin index (54)

1.27 1.97 1.04 1.95 1.12 1.63 0.65 1.03

Coupling measure (55)

0.05 0.06 0.07 0.08 0.07 0.08 0.16 0.17

Davies–Bouldin index indicates how distant the points in a cluster are, i.e.

low values suggest that drugs in a cluster are similar. The Coupling Measure

indicates how similar centroids in a clustering are, i.e. low values suggest that

the centroids are distant. More distant values are highlighted in bold.
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Table 20 presents the targets associated with the drugs in

one of the clusters in the clustering of the GPCRs using

AnnSim; additionally, the number of interactions is re-

ported. We can observe that in this cluster, 19 out of 27

interactions between the nine drugs and their targets

correspond to interactions with a target of the class Gamma-

aminobutyric-acid receptor. This result corroborates

the pattern suggested in Dataset 4, where drugs placed in

the same cluster are very likely to interact with the same tar-

gets. Because information about the similarity between the

targets was not considered by AnnSim, these patterns could

not be identified by clustering these drugs in terms of this

measure. In terms of discovery, the identified patterns cor-

roborate hypothesis of existing drug–target link prediction

approaches (20), which state that similar drugs are related

to similar targets. Thus, the clusterings obtained using

AnnSim could be used as input of state-of-the-art link pre-

diction approaches to support the prediction of potential

new interactions between drugs and targets.

Conclusions and future work

We have proposed an annotation similarity measure called

AnnSim to determine the relatedness of two entities based on

the similarity of their sets of annotations. AnnSim is defined

as a 1–1 maximum weight bipartite matching. We have per-

formed an extensive evaluation using multiple datasets and

ground truths. First, we evaluated the quality of existing

taxonomic distances with respect to multiple ontologies,

then these taxonomic measures and ontologies were used to

compute AnnSim. The observed results corroborate that

AnnSim is stable across different taxonomic measures and

ontologies. Furthermore, we use the online tool CESSM for

the automated evaluation of GO-based semantic similarity

measures on GO terms, the sequence similarity and AnnSim.

The observed results suggest that AnnSim can also be used to

explore and explain deeper and more nuanced relationships

among proteins or drug families. These relationships are

moderately strong to strong correlated to domain-specific

measures. Finally, AnnSim was compared with a great var-

iety of domain-specific similarity measures to compute re-

latedness of drugs and targets. An extensive evaluation was

conducted on the quality of the clusterings obtained from

these measures. We could observe that although AnnSim is a

general-purpose measure that does not exploit knowledge or

properties of a particular domain, it is competitive with a

variety of domain-specific measures. The reported results

can be used to suggest or discover potential relationships be-

tween scientific entities. Although AnnSim exhibits a good

behavior in a diversity of datasets, we note that the 1–1 max-

imum weight bipartite matching has many limitations since

it ignores unmatched terms and does not consider groups of

matching terms. In future work, we will explore extensions

to ‘n–m maximum weight bipartite matching’ to uncover po-

tential relationships between terms that may contribute to

more precisely measurements of relatedness between scien-

tific entities and to suggest potential novel patterns.
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